Montreal Taxonomy of eNegotiations
- From Description to Design -

Christof Weinhardt, Clemens Czernohous
Institute of Information Engineering and Management
Universität Karlsruhe (TH)

Banff, May 17th 2004
The Intuition of the Montreal Taxonomy

- Different Disciplines are concerned with electronic negotiations
 - Electronic Commerce
 - Information System
 - Experimental Economics
 - Negotiation Analysis
 - Game Theory
 - Decision Support Systems
 - Multi-Attribute Decision Theory
 - Anthropology

- Any Discipline has its own terminology and ontology that is incompatible with each other

- Electronic Negotiation strives for integration of all streams

→ Montreal Taxonomy for a joint terminology
The Montreal Taxonomy as Description Methodology

<table>
<thead>
<tr>
<th></th>
<th>Exogenous criteria</th>
<th>Endogenous criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit criteria</td>
<td>• Constitution</td>
<td>• Trading Rules</td>
</tr>
<tr>
<td></td>
<td>• Business Conduct</td>
<td>• Business Rules</td>
</tr>
<tr>
<td></td>
<td>• Negotiation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Situation</td>
<td></td>
</tr>
<tr>
<td>Implicit criteria</td>
<td>• Culture</td>
<td>• Revenue</td>
</tr>
<tr>
<td></td>
<td>• Social Norms</td>
<td>• Efficiency</td>
</tr>
<tr>
<td></td>
<td>• Strategic Goals</td>
<td></td>
</tr>
</tbody>
</table>

Ströbel and Weinhardt [2003]
The Montreal Taxonomy as Description Methodology

- Point of Origin is the Media Reference Model

 [Schmid, B. (1998)]

 ![Diagram](Image)

 - **Knowledge Phase**: gathering information concerning products, market participants, etc.
 - **Intention Phase**: specifying supply and demand with offers to sell and offers to buy
 - **Agreement Phase**: identifying the terms/conditions of the transaction and signing a contract
 - **Settlement Phase**: execution of the agreed-upon contract, payment, post-sales support
The Montreal Taxonomy as Description Methodology

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sides</td>
<td>...</td>
</tr>
<tr>
<td>Directions</td>
<td>...</td>
</tr>
<tr>
<td>Activities</td>
<td>...</td>
</tr>
<tr>
<td>Value</td>
<td>Threshold</td>
</tr>
<tr>
<td>Schedule</td>
<td>Sorting</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Resolution</td>
</tr>
<tr>
<td>Distribution</td>
<td>Provision</td>
</tr>
<tr>
<td>Configuration</td>
<td>Commitment</td>
</tr>
</tbody>
</table>

Endogenous explicit criteria

[Ströbel and Weinhardt (2003)]
The Montreal Taxonomy as Description Methodology

Overall Rules

Roles
- bilateral
- multilateral
- intermediated

Intention Phase
- Offer Specification
- Offer Submission
- Offer Analysis

Agreement Phase
- Offer Matching
- Offer Allocation
- Offer Acceptance

Endogenous explicit criteria

Attributes
- Values

Sides
- Directions
- Activities

Value
- Threshold

Schedule
- Sorting
- Evaluation
- Resolution

Distribution
- Provision
- Configuration

Commitment

[Ströbel and Weinhardt (2003)]
Montreal Taxonomy – A Tool for Design?

• Parametrization yields “configuration space” (endogeneous criteria)

Criteria

<table>
<thead>
<tr>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>I_4</th>
<th>I_5</th>
<th>I_6</th>
<th>I_7</th>
<th>I_8</th>
<th>I_9</th>
<th>I_{10}</th>
<th>I_{11}</th>
<th>I_{12}</th>
<th>I_{13}</th>
<th>I_{14}</th>
<th>I_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{1,1}$</td>
<td>$I_{2,1}$</td>
<td>$I_{3,1}$</td>
<td>$I_{4,1}$</td>
<td>$I_{5,1}$</td>
<td>$I_{6,1}$</td>
<td>$I_{7,1}$</td>
<td>$I_{8,1}$</td>
<td>$I_{9,1}$</td>
<td>$I_{10,1}$</td>
<td>$I_{11,1}$</td>
<td>$I_{12,1}$</td>
<td>$I_{13,1}$</td>
<td>$I_{14,1}$</td>
<td>$I_{15,1}$</td>
</tr>
<tr>
<td>$I_{1,2}$</td>
<td>$I_{2,2}$</td>
<td>$I_{3,2}$</td>
<td>$I_{4,2}$</td>
<td>$I_{5,2}$</td>
<td>$I_{6,2}$</td>
<td>$I_{7,2}$</td>
<td>$I_{8,2}$</td>
<td>$I_{9,2}$</td>
<td>$I_{10,2}$</td>
<td>$I_{11,2}$</td>
<td>$I_{12,2}$</td>
<td>$I_{13,2}$</td>
<td>$I_{14,2}$</td>
<td>$I_{15,2}$</td>
</tr>
<tr>
<td>$I_{1,3}$</td>
<td>$I_{2,3}$</td>
<td>$I_{3,3}$</td>
<td>$I_{4,3}$</td>
<td>$I_{5,3}$</td>
<td>$I_{6,3}$</td>
<td>$I_{7,3}$</td>
<td>$I_{8,3}$</td>
<td>$I_{9,3}$</td>
<td>$I_{10,3}$</td>
<td>$I_{11,3}$</td>
<td>$I_{12,3}$</td>
<td>$I_{13,3}$</td>
<td>$I_{14,3}$</td>
<td>$I_{15,3}$</td>
</tr>
<tr>
<td>$I_{1,4}$</td>
<td>$I_{2,4}$</td>
<td>$I_{3,4}$</td>
<td>$I_{4,4}$</td>
<td>$I_{5,4}$</td>
<td>$I_{6,4}$</td>
<td>$I_{7,4}$</td>
<td>$I_{8,4}$</td>
<td>$I_{9,4}$</td>
<td>$I_{10,4}$</td>
<td>$I_{11,4}$</td>
<td>$I_{12,4}$</td>
<td>$I_{13,4}$</td>
<td>$I_{14,4}$</td>
<td>$I_{15,4}$</td>
</tr>
<tr>
<td>$I_{1,5}$</td>
<td>$I_{2,5}$</td>
<td>$I_{3,5}$</td>
<td>$I_{4,5}$</td>
<td>$I_{5,5}$</td>
<td>$I_{6,5}$</td>
<td>$I_{7,5}$</td>
<td>$I_{8,5}$</td>
<td>$I_{9,5}$</td>
<td>$I_{10,5}$</td>
<td>$I_{11,5}$</td>
<td>$I_{12,5}$</td>
<td>$I_{13,5}$</td>
<td>$I_{14,5}$</td>
<td>$I_{15,5}$</td>
</tr>
</tbody>
</table>

Possible rules

[Neumann, 2004]

More structure is needed for successful design
Montreal Taxonomy – A Tool for Design

- A generic Process imposes structure upon the criteria

Message Exchange Phase
- Intention Phase
 - Opening rule
 - Transition rules
 - AD = Allocation determination
 - PD = Price determination
- Agreement Phase
 - Closing rule
 - Transfer rule
 - Resolution of the agreement
 - AD = Allocation determination
 - PD = Price determination
Montreal Taxonomy – A Tool for Design

Market Modeling Language (MML) in XML

```xml
<xs:simpleType name="Mt_object">
  <xs:restriction base="xs:string">
    <xs:enumeration value="single"/>
    <xs:enumeration value="multiple"/>
    <xs:enumeration value="bundled"/>
  </xs:restriction>
</xs:simpleType>
```

```xml
<xs:complexType name="MatcherType">
  <xs:sequence>
    <xs:element ref="OrderMatchingAlgorithm"/>
  </xs:sequence>
  <xs:attribute name="name" type="xs:string" use="required">
    <xs:annotation>
    </xs:annotation>
  </xs:attribute>
</xs:complexType>
```

```xml
<xs:complexType name="Mt_object">
  <xs:restriction base="xs:string">
    <xs:enumeration value="single"/>
    <xs:enumeration value="multiple"/>
    <xs:enumeration value="bundled"/>
  </xs:restriction>
</xs:simpleType>
```

```xml
<xs:complexType name="MatcherType">
  <xs:sequence>
    <xs:element ref="OrderMatchingAlgorithm"/>
  </xs:sequence>
  <xs:attribute name="name" type="xs:string" use="required">
    <xs:annotation>
    </xs:annotation>
  </xs:attribute>
</xs:complexType>
```
Levels of the market modelling with MML

- **GUI**
- **XML**
- **Code**
- **Market runtime environment**

Levels of abstraction:
- Platform-independent
- Platform-dependent
Electronic Financial Trading System as Application
Electronically Financial Trading System as Application
Conclusion

• E-FITS as negotiation configuration tool based on Montreal Taxonomy
• What is it good for?

Implicit Criteria / Outcome

- Exploration of the Design Space (Market Engineering WB26)
- Search for Testing Strategies

Exogenous Criteria

Endogenous Criteria
Thank you for your Attention!
Questions?

cristof.weinhardt@iw.uka.de
clemens.czernohous@iw.uka.de

Universität Karlsruhe
Englerstrasse 14
D - 76131 Karlsruhe
Germany

Tel. +49/ (0) 721 - 608 8371
Fax +49/ (0) 721 - 608 8399
www.iw.uni-karlsruhe.de

www.iw.uni-uni-kerlsruhe.de