
DO E-BUSINESS SYSTEMS HAVE CULTURE
AND SHOULD THEY HAVE ONE? ∗

Gregory (Grzegorz) E. Kersten

John Molson School of Business
Concordia University, Montreal, Canada

(gregory@jmsb.concordia.ca)

ABSTRACT. E-business systems, the latest generation of information systems, are used by people
from different countries and with different backgrounds. Cultural consideration of software products
has been limited to interfaces through internationalization architectures and localization practices.
There has been little discussion about the cultural values and practices that are embedded in the core of
software e-business systems. These artefacts may lead to modification of cultures and cause their uni-
formity. To avoid it cultural artefacts need to be considered in both the interface and the core. Two
complementary methods are proposed: one is based on the extension of software localization beyond
the interface; the other utilizes emerging software design paradigms based on the meta-object orienta-
tion.

1. E-BUSINESS SYSTEMS AND CULTURE

E-business systems are the latest generation of information systems that extend beyond the enterprise
allowing for communication among organizations and between companies and consumers. The enter-
prise may be a business or any other organization that is involved in activities such as procuring prod-
ucts and services, exchanging information, and brokering.

An e-business system (EBS) differs from other information systems in several key aspects. It is net-
work-centric and relies on ever-present Internet connectivity. Business-to-business EBSs provide tight
integration of intra-enterprise business processes (e.g., supply chain management). Business-to-
consumer EBSs allow for a very large number of consumers to access the enterprise via the Internet.
Their user interface is provided by the web browsers, it is easy to understand and common to many
different applications. In addition, the availability and popularity of the Internet brings numerous other
opportunities for transformation of business processes and creation of new forms of interaction
(Buffam 2000).

EBSs comprise some of the most recent advances of software and hardware technologies. They con-
tinuously expand incorporating decision and negotiation support systems, knowledge-based systems,
software agents and other information systems. Their scope exceeds earlier information systems inte-
grating front- and back-office; organizations within a value chain and those that share the marketplace.
In effect EBSs are used by organizations and people from all over the world; they affect the way or-
ganizations are structured, business processes are conducted, and customers interact with organizations
and make purchasing decisions.

∗ Dr. Sunil Noronha’s (IBM T. J. Watson Research Center) and Margaret Kersten’s (Carleton Universityy) comments and
suggestions are gratefully acknowledged. This work has been partially supported by grants from the Natural Sciences and
Engineering Research Council of Canada and Concordia University.

Almost all the EBSs that are being introduced everywhere in the World are developed in Silicon Val-
ley. Even if they are developed elsewhere, they tend to embed the Silicon Valley-centric view of busi-
ness and economy. As Zysman (1999) notes, the belief is that “Policy driven by market transformation
rooted somewhere south of Palo Alto will overcome and sweep away national economic models and
the state’s capacity to regulate, forcing the development of a single international market.”

The dominant perspective on the development of EBSs is rooted in neo-liberal, scientist world-view.
According to this view, the world largely comprises of leaders and followers. The leaders are visionar-
ies and they define and redefine the rules; they, and those who work with them, comprise the new
class and create the “third culture” (Brockman 1995). The followers, in this new third (technocratic)
culture, are burdened by policies that retard their own progress and often try to slow down the advance
of the leaders.

This new third culture is an offspring of science; it is based on the respect and peerage that network
technologies made possible. It is a streetwise science culture, one where working scientists communi-
cate directly with lay people, and the laymen challenge them back (Kelly 1998). It is technocratic and
as such it does not reject regional and local cultures, it merely ignores them. It is expansive not be-
cause of the values and believes it espouses but because of the ubiquitous and pervasive technology. It
is neutral and flexible hence able to use every solution and approach to strengthen its reach and effec-
tiveness.

This view implies a single model of the economy on which all societies and policies must converge.
Because the U.S. has the lead, the rules governing the new economy should reflect U.S. regulatory and
economic institutions and practices (Zysman 1999). Further, the understanding is that technologies
should dominate the policy and social choices, and that they eventually produce a single global mar-
ket, similar business models, organizations and—ultimately—beliefs and values.

This paper draws on some observations and concepts developed in studies of technology and culture.
It continues the discussion on culture and software that has started recently (Carmel 1997; Cioffi 1999;
Hall 1999; Kersten, Matwin et al. 2000; Kersten, Kersten et al. 2001). It builds on: (1) the philosophy
of technology, and in particular the relationships between culture and technology (Heidegger 1977;
Pacey 1983; Feenberg 1991); and (2) the foundations software technology, its development methodol-
ogy, and its use.)

The objective of this paper is to outline a research framework for studying the ways culture is, should
or could be, embodied in EBSs. To this end an attempt is made to address the following questions: Do
EBSs contain culture? If yes, what is this culture and how does the culture get embedded? Do we need
different cultures embedded in EBSs? If yes, what do the EBSs designers need to do to modify the em-
bedded culture?

There is no solid theory that links software and culture, or the way ideas and values are implemented
in software. Such a theory is needed if the EBSs are to reflect national and regional cultures that are
different from the culture in which the software was developed. It is also needed if EBSs are to support
and represent organizational cultures that are different from IBM’s or Microsoft’s. We argue that
many cultural aspects and characteristics are missing in the EBSs core but they should be embedded in
these systems in order to preserve the existing cultures.

According to the instrumental perspective, software is culturally neutral. This appears to be a pre-
dominant perspective in the US-dominated software industry (Carmel 1997). Cultural adaptation is
then limited to the interface discussed in Section 2. The instrumental perspective on software technol-
ogy is contrasted, in Section 3, with a richer understanding of both culture and technology. The need
for further studies of the EBS models and architectures is discussed in Section 4. Assumption that cul-
ture is present at the deeper levels than the interface leads us to propose in Section 5, a software cul-

turalization architecture which is an extension of well established software internationalization archi-
tecture. The concluding remarks focus on culture unification as opposed to adoption, and the future
versions of EBS which will be used by public institutions and communities.

2. CULTURES AND SOFTWARE INTERFACE

The wide spread use of software packages such as word processors, spreadsheets and browsers has
lead software companies to recognize that a significant portion of their revenues are coming from out-
side of the English speaking world. This recognition, together with the saturation of the US market,
triggered efforts to adapt the companies’ products to the requirements of foreign, non-US markets.
Software localization methods were constructed to modify software written in one language for mem-
bers of one culture to another language and for members of another culture (Keniston 1999).

The requirement that software must fit the cultural context of the user has been widely accepted. How-
ever, this context has been defined solely in terms of the requirements regarding the user interface. In
his answer to the question "What then needs to be encapsulated in this concept of cultural context?”
Taylor (1992) lists the following locales, i.e., the collections of all the conventions that characterize a
particular culture or user community: transliteration, hyphenation, spelling, collation, national conven-
tions (numbers, currency, time and date), and colour (op. cit.). Hall adds such elements as messages,
terminology, and positioning of windows, tables and graphs (Hall 1999).

The premise behind the external perspective is that “all the culturally and linguistically sensitive soft-
ware components need to be separated from the core of the application” (Hall 1999, p. 298). Following
this premise, software internationalization architectures have been proposed in which the locale sensi-
tive and independent elements are separated (Hall and Hudson 1997). Hence, the software comprises
of the culturally dependent interface that must be localized and the culturally independent core.

The separation of the core and the interface led to software internationalization architectures in which
the locale sensitive elements are separated from the locale independent core (del Galdo and Nielsen
1996; Hall 1999). Design methods for translating software from their source market to the target mar-
kets have been developed and implemented in many products. These methods are based on three top-
ics: (1) the choice of character codes; (2) the use of locales; and (3) the use of resource files. A generic
model of high-level software internationalization architecture is presented in Figure 1.

Figure 1. Interface-driven software internationalization (adapted from Kersten et al. 2001).

The software internationalization architecture illustrated in Figure 1, allows for localization. Keniston

(1999) notes that “localization, or more generally language, has rarely been treated as an important
topic in the literature on the impact of the so-called Computer Age”. Individuals, organizations and
governments have been, however, aware of this problem and have made attempts to address it. For
example, the government of the republic of Iceland asked Microsoft to develop an Icelandic version of
MS Windows so that young Icelanders would not loose fluency in their native tongue. France is one of
the most active opponents of Anglo software and insists on software localization. Together with Can-
ada’s French-speaking Quebec they have made efforts to use French and restrain the "Anglophonic
tide" (op. cit.).

Governments and other organizations make significant efforts to protect their languages. The question
is, however, whether or not they in fact address the deeper issue of the impact of software, and espe-
cially the EBSs, on the society and its values. If we accept the need for software localization, or even
the fit to a particular culture, then the interface is an aspect that is obvious but perhaps not the most
important. As we argue in the next section, there is more to culture than language just as there is more
to software than interface.

3. METHODOLOGICAL CONCEPTIONS

3.1 Surface culture and deep culture

The third or the technocratic culture is empiricist and utilitarian. It is outcome oriented, and promotes
individual endeavours and risk-taking. It espouses reductionist and generalizing perspective seeking
universal laws and objective explanations (Kuper 1999). This culture, as all other cultures, has values,
beliefs and norms, but it espouses the economic and technological progress rather than history, social
interaction, faith and tradition. This led to the surface perspective on culture, one that is limited to lan-
guage and other symbols that represent the most surface manifestation of culture (Kersten et al. 2001).

There is another understanding of culture. According to it culture is a structure of meanings, beliefs
and values that condition human behaviour while allowing for its interpretations and purposefulness.
The set of values is unique for a given culture and it cannot be detached and interpreted as an instance
of a culture-free biological and economic basis. Culture is, as Hofstede (1997) put it succinctly, the
software of the mind; and “if the cultural faith is eroded, life loses all meaning.” (Kuper 1999, p. 6).

This latter perspective distinguishes between deep culture and surface culture. Deep culture includes
beliefs, values ideas, knowledge, procedures and norms. It manifests itself in language, symbols, arte-
facts and objects ranging from art to organizational structures to clothing and cars, all of which are
elements of the surface culture. The meaning of the symbols and artefacts is defined by the deep cul-
ture and so any separation of the surface causes loss of the intended meaning. Thus, learning the val-
ues and other constructs underlying any particular cultural manifestation is required to interpret this
manifestation within the culture that it was created by. Similarly, creating a manifestation within one
culture for another culture requires understanding of the other culture on a deep level.

Both deep and surface cultures are present in business and other organization. The surface culture is
the set of symbols (e.g., logos, dress code) and it is the manifestation of the organization’s values, ritu-
als and norms which form the core of any culture.

3.2 Technology, Software and Culture

Technology is knowledge embedded in products and processes created by people to meet their needs,
as well as these products and processes themselves. Several perspectives on the role and value of tech-
nology have been proposed within the philosophy of technology. According to the instrumental theory

technology is neutral. The four tenets of this perspective are: (1) indifference of technology to the ends
it is used to achieve; (2) indifference to politics; (3) universally rational character; and (4) possession
of a common standard of measurement (typically efficiency) which is independent of producers, situa-
tions, users, etc. (Feenberg 1991). This instrumental perspective fits well with the technocratic culture
and its values.

In this view technology is deterministic and proceeds separately from the demands of culture and soci-
ety (Pacey 1983, p. 83). Product design and development can be done in isolation of the users and their
situation. This means that in software development interface localization is sufficient. Pacey argues
that this technocratic value system is single-minded and insistent on an unambiguous and neutral view
of progress, collaboration, problem solving, and values.

Hart-Davidson (1997) defines technology as the set of artefacts and the sets of cultural beliefs, prac-
tices, and texts that surround the production, use, distribution, and conceptualizations of those arte-
facts, designed to produce some cultural condition. In this perspective, which Feenberg (1991) calls
the critical theory of technology, technologies are used to advance and enrich social objectives, and
they cannot be seen as separate from people. Software, developed by an organization, is a technology
in which values and ideas of the organization and the individuals are embedded. There are three forms
in which the cultural embedding in technology occurs (op. cit.):

1. It happens unconsciously being inherited via the cultural programming of its human designers and
developers;

2. It is implemented intentionally in design requirements which are specified for the target markets;
and

3. It emerges through the interaction of group and organizational cultures reflecting their develop-
ment processes, structures, and incentives to control the environment.

The Linux and Windows operating systems are striking examples of the latter, reflecting the impor-
tance given to cultural values such as openness and flexibility versus ease of use and stability.

The cultural differences in the software core can be easily seen with three decision support systems
developed in France, Great Britain and US (Kersten et al. 2001). We may note here that the Electre
family of systems, which were developed in France, have been widely studied and used in Quebec but
rarely in the other provinces. Demeester (1998) provides another example in his overview of the Euro-
pean project of telematics and its introduction to medical practice:

“The way culture interferes with it is through its influence on the decisions and the decision-
making processes. Dramatic conflicts between developers and users, suppliers and purchasers, or
integrators of telematics applications are revealed: they often lead to failures and rejection of a
priori sound solutions. … The objectives of both projects are to trigger awareness of the influence
of cultural diversity on telematics and to provide a methodology and methods to use culture as an
explicit component when deciding for a telematic application and implementing it.”

3.3 Culture’s past and future

Technocratic culture and instrumental perspective on technology, and the culture and critical theory of
technology, reinforce each other. In addition to the examples given above, there are many other cases
indicating the relationship between software and deep culture. This undermines the instrumental per-
spective but the limitation concerns past and present. That is, one cannot reject that the technocratic or
technocratic (third) culture becomes both universal and accepted.

The possible universal acceptance of the technocratic culture does not imply that the concept of deep
culture is invalid. To the contrary, it is because the values and laws of the technocratic culture are em-
bedded in technology, and foremost in software, this culture may effectively modify or perhaps even
replace other cultures. If this happens the core (deep culture) cannot be differentiated because its val-
ues, norms and laws are universal and neutral. Differentiation would be possible but only by surface,
that is, language and other symbols.

From the above follows that technology needs to be judged on the basis of its relationship with deep
culture. Software, I think, plays critical and much different role than other technologies. There are at
least three reasons for this: (1) software is used directly for the collection and manipulation of infor-
mation and knowledge, both of which are culture dependent; (2) software, contrary do other techno-
logical artefacts, does not have long history and no competitors in the existing cultures; and (3) there
is, as discussed in section 1, a strong imbalance in the software development efforts. Based on the
above, two alternatives are suggested:

1. Software characteristics are unique and they cannot be separated from the technocratic culture of
producers. Software is so powerful because its use modifies various cultures making them more
uniform.

2. The power of software lies in its ability to embed different cultures and to support their manifesta-
tions. It can help to maintain and enrich language but it can also help to maintain and enrich val-
ues, beliefs and norms.

Both alternatives recognize that it is the software core and not only the interface that influence differ-
ent cultures. I discuss the implications of accepting the first alternative in Section 6. In the next two
sections I assume that the second alternative is preferable. This alternative can only be implemented if
both surface culture and deep culture are embedded in software. Restricting software design and de-
velopment to interface localization will eventually lead to the adoption of the deep culture of the origi-
nal designers. For this reason further discussion concentrates on software core rather than its interface.

4. EBS MODELS AND ARCHITECTURES

4.1 Business models and architectures

Organizations operate in a culture. They also create their own cultures through interactions of their
employees and interactions with other organizations. An EBS, from this perspective, does more than
any system of the earlier generations because it directly and autonomously interacts with the environ-
ment. For customers, an organization may be only its EBS; the enterprise is represented with its EBS
and all the interactions with its customers are conducted via the system. If we take a narrow IS view-
point according to which for users “the interface is the system” then all the organizational values, ritu-
als and norms have to be disregarded. If, on the other hand, an organization wishes to continue project-
ing its culture then this has to be reflected at the application level in addition to the interface.

E-business requires information systems to operate autonomously and act on behalf of businesses. The
autonomy, the scope of the operations which EBSs perform, and their strategic role requires a compre-
hensive approach to their design and assessment. In addition, new types of businesses that Internet
made possible are largely virtual, made a piece-meal approach to EBS development impossible. To
build a software system that operates as a complete business requires an architectural approach
(Buffam 2000). First, a business model which specifies business strategies describing business struc-
ture, functions and high-level operations is constructed (Treese and Steward 1998). This model pro-
vides a blueprint for the definition of the corresponding EBS model and other interacting entities (e.g.,
employees and legacy systems). The EBS model has functional and resource layers (Abou-Zeid 2000).

The EBS model provides the basis for the EBS architecture which comprises particular technological
solutions used to implement the business model. The three entities, that is, the business model, EBS
model and the high level tiered architecture are depicted in Figure 2.

Figure 2. Business model, EBS model and e-business architecture

The functional layer of the EBS model specifies the ways of doing business; production, marketing,
fulfillment and other business processes are defined here. The resource layer comprises specialized
services that enable and support business transactions including catalogues, e-money, integrated logis-
tic systems, and contracting tools. The elements of the two layers are then mapped onto the e-business
architecture.

The e-business architecture has several distinct servers, including the database server, application
server (also known as e-commerce server) and a web server. There are also other servers, which we
call here support servers, for example the knowledge-base server used for personalization, server for
site management or for translation.

The functional layer elements are implemented in the application server and they provide the business
logic components (e.g. as Enterprise Java Beans). Some of these elements may be considered as sup-
port business processes separated from the application server (e.g., security, search, and personaliza-
tion). These elements are implemented, as depicted in Figure 2, in the support servers.

The resource layer element provides design specification for specialized processes, which can carry
business functions, and for the e-business infrastructure. They are mostly implemented in the database
server and support servers, some, however, may be implemented in the application server.

4.2 Objects

The modelling approach to system design and the extensive use of servers is heavily based on the ob-
ject-oriented approach to system analysis and design. The system (enterprise) is represented with ob-
ject models, which are abstractions of the real-world objects. The separation of the object’s behaviour
from their implementation allows for context-dependent action rather than the necessity for a higher
level of control program. Objects are initiated by a particular state and they modify this state, thus they
indirectly activate other objects. This can be efficiently implemented in a server configuration, for ex-
ample, an application server.

Separation of the object behaviour from its implementation makes design and development easier and
more flexible. Each object can be designed separately and its implementation may change without af-
fecting its behaviour. The object-oriented approach has had an enormous impact on the efficiency and

effectiveness of software development. Even if many real-world objects may have something in com-
mon, the same objects in one configuration may behave differently than in another configuration, and
objects’ behaviour may be affected when they share certain features.

A real-world object, for example a real estate agent provides different services to customers in one
culture than in another. In some cases the difference may be due to a different configuration of objects
in which the agent operates, in other cases however, the set of objects may be the same. The difference
may be due to a similarity in the attribute value assignment to objects. The object-oriented approach
does not preclude modelling of similar systems immersed in different cultures or systems which be-
haviour is influenced by some similarity that the objects share. These, often implied, relationships
must be explicitly represented and additional objects may be needed to provide expected behaviours.
Several software design approaches, which address these issues, have been proposed; they are dis-
cussed in Section 5.

4.3 Example

Consider two small real estate agencies conducting business on the Internet. One agency, called
REA1, is located in a “third culture” country with individualistic, masculine, efficiency-oriented, time-
conscious and mobile people. The other agency (REA2) is located in a collectivist, relationship-
oriented and feminine culture where “time is slow”, people are community-oriented and they live in
one place for generations. The real estate business can be represented with an electronic broker model.
In Figure 3 we present a simplified model of two real estate agencies, based on the electronic broker
model proposed by Julta et al. (1999).

Figure 3. Two real estate models

There are both similarities and differences between the two models presented in Figure 3. They reflect
the agencies’ organization and functions. One difference is the involvement of the community in the
transactions; both customers and the community are interested in establishing contacts prior to the pur-
chase. This requires the agency to collect data about the community and to provide a discussion forum
for the customers and the community members. The purpose of the discussion is to determine whether
both the customers and the community share common interests and values. Other differences may
include different roles of the agency in its interaction with the bank or other financing company, scope
of collaboration with other agencies, and so on.

The differences would be manifested not only in the interface of each agency EBS but also in its core.
The information about customers and the properties collected by each agency is different as well as
certain transactions may be different. The additional elements in one business model will be imple-
mented as applications in one EBS, and they will be absent in the other EBS.

5. EBS CULTURALIZATION ARCHITECTURE

The existing approach to software development is based on selection of the underlying decomposition
methods with two most prominent approaches being object orientated and functional decomposition.
In order to obtain consistency in defining the hierarchy and its elements decomposition methods re-
quire the use of a single criterion. The use of multiple criteria would cause that some elements could
not be separated and classified leading to the “tyranny of the dominant decomposition” by object or by
function (Ossher and Tarr 1999).

Decomposition of a real-world object allows obtaining elements that are represented with software
components. These components are then placed together so that they represent some or all functional-
ity of the real-world object, can support its functioning, or undertake activities on its behalf. In the cur-
rent tiered EBS architectures these components are placed in the application, services and other servers
(see Figure 2).

Two complementary steps for software culturalization architecture are proposed:

1. Specific consideration of the culture and its characteristics at the business model level and then at
the EBS-model level. This means that the culturally sensitive aspects of EBS are “pushed down”
the interface and include the elements of business logic and the application server.

2. The behaviour of the element (object) is linked with the characteristics of the level higher than the
object’s attributes. Similarity, aspects, and concerns are used to define the “accepted behavioural
norms” for objects.

The first step requires the recognition of elements in the business model (both constructs and activi-
ties) that are generic for every type of business as well as every business of the particular type. For
example, products and services, customers, business transactions, and security are present in every
business. Other elements, like inventory, production and warranty services are typical for some busi-
nesses. These elements are present in the functional layer of the EBS model. The resource layer con-
tains components that support business model implementation and its localization to a particular cul-
ture.

A deepening of the “locale” concept is one way to proceed, capturing those cultural attributes that can
be precisely measured and represented. Such an extended locale can be treated synonymously with
"cultural profile", a subcomponent of the "user profile". Formal specification of culture-specific prac-
tices is a difficult task and one that has not been studied. It requires capturing those cultural attributes
that can be measured, compared and represented. It needs to be done by those who “live” the particular
culture and are able to design system architecture, components and relationships among them reflect-
ing this culture. The difficulty is that “software evangelists”, designers and developers who live one
culture have more in-common with their colleagues in other cultures than with the current and future
users of the systems (Barber 1995).

The second step involves new software design paradigms like aspect-oriented programming and sub-
ject-oriented programming which specifically recognise the cross-cutting and similarity of objects
(Kiczales, Lamping et al. 1997; Ossher and Tarr 1999). Concerns and aspects may be viewed as appli-
cation attributes which determine which software components need to be selected and configured to
correspond to a particular business logic model. In this sense aspects can be used to represent shared
cultural traits and the specific realizations of these traits on the software implementation-level.

An example of EBS culturalization architecture, which is based on the first step, is given in Figure 4. It
involves the internationalization of the interface and the core. Internationalization of the software core
distinguishes culture-dependent components from other components of the core. This is not to say that

there are components that are completely independent of any culture; this would contradict the critical
theory of technology. Different cultures share certain values and beliefs; therefore there are certain
mechanisms which can be used to represent business processes across many cultures.

Figure 4. EBS culturalization architecture.

The use of meta-object methodologies (e.g., aspect- and subject-oriented programming) requires the
identification of the factors and phenomena that are involved in the influence of software on culture,
and in the influence of culture on software. This could result in “cultural testing tools”, i.e. rulesets
characteristic for specific cultures against which some types of software (e.g. groupware) could be run
to detect potential conflicts and/or inconsistencies. These methodologies can facilitate the incorpora-
tion of culturally specific attributes into the software core because they aim at capturing concerns that
affect multiple parts of a software system.

One of the outcomes of such a program may be a framework in which culturally sensitive features are
organized into a "best practices" collection of guidelines/recommendations for software design. Such a
framework would be very interesting from the research viewpoint. It would be also useful from a busi-
ness viewpoint if it speeds the process of internationalizing products (or more generally, expanding
from one market to another, even within the same country). That is purely a call for a cultural research
framework. Basically, the requirement is to provide the "intelligence" that diagnoses a user as belong-
ing to a given culture (profiling), and the business knowledge that determines what actions should be
taken by the software in order to adapt to the culture.

6. BEYOND E-BUSINESS SYSTEMS

Vaclav Havel (1995) writes that our civilization is the first one that spans the entire globe, binds to-
gether societies who share common destiny, amalgamating their cultures. There are many strong ar-

guments for the process of culture unification and homogenization caused by—according to Toynbee
(1934)—technology and economy (Segal 1995). Adoption of technology requires and leads to similar
socio-economic institutions; the same technologies channel their users into the same type of activities
and kinds of hierarchies (Gellner 1983). The result is that an increasing portion of every society is be-
coming a part of the emerging worldwide culture.

Computer-based communication, computer networks, Internet, software applications and EBSs am-
plify the influences of one culture over others. Because the West led the development of the industrial
age, Western institutions (banks, research centers, organization charts, schools, and many other struc-
tures) in all advanced economies are similar. With the Silicon Valley leading the information revolu-
tion, it is—by extension—the third culture that will become dominant.

The first alternative for software-culture relationship formulated in Section 3.3 is based on the premise
that software is a more powerful technology than previous technologies. It affects organizations and
people, setting the stage for new type of structures and processes. Software, being an inherent part of
the technocratic culture, defines the directions for culture homogenization. The difficulty in accepting
the third culture replacing existing cultures is that it is not sufficiently rich and complex to interpret
and accommodate needs of many people and institutions.

This third culture being technocratic, neutral and flexible is able to use new solutions and approaches
to increase efficiency and effectiveness of activities and enterprises. It does not reject or attempt to
change other cultures but ignores them. When required, the solutions are adapted so that they can be
accepted by others. Software internationalization is one such example. When there was strong demand
for non-localized software there was little interest in designing different locale. But when some mar-
kets became saturated and new opportunities were noticed software companies modified their software
to accommodate the requirements of new customers.

Surface-level modification may be difficult from the technical perspective but it is conceptually sim-
ple. The use of fonts, colours and formats typical for any culture can be easily noted from the outside,
categorized and a specification obtained. This is not the case with values and symbols; decision-
making and collaboration. Deep culture needs be understood and internalized, requiring time and ef-
fort. Some elements cannot be easily compared with those in other culture, in particular with the tech-
nocratic culture.

The proposition that I put here is that in such areas as research and development, finance and business
the technocratic culture will dominate. It will evolve and become richer with the changes in business
organizations, production processes, and markets. This culture, however, will not meet those people
and organizations needs and expectations that are rooted in their histories, heroes and social values.
Software support meeting these requirements will necessary and will be sought. Increasing number of
people and institutions will need software services that provide underlying infrastructure on which
their households, daily routines will be organized. They will also need software to create, manage and
use information and knowledge within social context.

EBSs that are used for and by organizations that are similar across cultures, and by those who share
the technocratic culture need not be based on the culturalization architecture. However, systems which
are targeted to small businesses and local markets will require such architecture. This is even more
important with respect to EBS-type systems which are used by local governments and communities.
While the present scale is small and largely limited to North America, one can envision that in near
future this type of systems will be used by numerous communities and household to plan, manage re-
sources, solve problems, collaborate and resolve conflicts.

REFERENCES

Abou-Zeid, S. (2000). "Situation-based Approach for E-Business Functional Modelling". Object-
Oriented Information Systems, London.

Barber, B. (1995). Jihad vs. MacWorld. Princeton, N.J., Princeton University Press.
Brockman, J. (1995). The Third Culture: Beyond The Scientific Revolution. New York, Simon &

Schuster.
Buffam, W. J. (2000). E-Business and IS Solutions. An Architectural Approach to Business Problems

and Opportunities. Boston, MA, Addison-Wesley.
Carmel, E. (1997). "American Software Hegemony." The Information Society 13(1).
Cioffi, J. W. (1999). "The Digital Economy in International Perspective." University of California,

Berkeley. http://e-conomy.berkeley.edu/events/deip/summary.html.
del Galdo, E. M. and J. Nielsen, Eds. (1996). International User Interfaces. New York, Wiley.
Demeester, M. (1998). " L'implication des différences culturelles en télématique médicale : l'expéri-

ence des projets européens VICO et Babel." Santé et Réseaux Informatiques 10: 10-20.
Feenberg, A. (1991). Critical Theory of Technology. New York, Oxford.
Gellner, E. (1983). Nations and Nationalism. Ithaca, N.Y., Cornell University Press.
Hall, P. (1999). Software Internationalization Architectures. Decision Support Systems for Sustainable

Development in Developing Countries. G. E. Kersten, Z. Mikolajuk and A. Yeh, Eds., Boston,
Kluwer: 291-304.

Hall, P. and R. Hudson (1997). Software without Frontiers. New york, Wiley.
Hart-Davidson, B. (1997). "Locating the Techno-Discourse." Purdue University.

http://omni.cc.purdue.edu/~davidswf/tds.begin.html.
Havel, V. (1995). "The Need for Transcendence in the Postmodern World." The Futurist, (July-

August).
Heidegger, M. (1977). The Question Concerning Technology. New York, Harper and Row.
Hofstede, G. (1997). Cultures and Organizations: Software of the Mind. New York, McGraw-Hill.
Julta, D., P. Bodorik, C. Hajnal, et al. (1999). "Making Business Sense of Electronic Commerce."

IEEE Computer(March): 67-75.
Kelly, K. (1998). "The Third Culture." Science 279(53): 992-993.
Keniston, K. (1999). "Language, Power, and Software." MIT Program in Science, Technology, and

Society. http://web.mit.edu/kken/Public/papers3.htm.
Kersten, G. E., M. A. Kersten and W. M. Rakowski (2002). "Application Software and Culture: Be-

yond the Surface of Software Interface." Journal of Global Information Management, (in print).
http://interneg.org/interneg/research/papers/2001/01.html.

Kersten, G. E., S. Matwin, S. J. Noronha, et al. (2000). "The Software for Cultures and the Cultures in
Software". 8th European Conference on Information System. ECIS2000, H. R. Hansen, M.
Bichler and H. Harald, Eds., Vienna, Austria, 509-514

Kiczales, G., J. Lamping, A. Mendhekar, et al. (1997). Aspect-Oriented Programming. European Con-
ference on Object Oriented Programming, Berlin, Springer.

Kuper, A. (1999). Culture. The Anthropologists' Account. Cambridge, MA, Harvard University Press.
Ossher, H. and P. Tarr (1999). "Multi-dimensional Separation of Concerns in Hyperspace." IBM T.J.

Watson Center. http://www.research.ibm.com/hyperspace/Papers/sac2000.pdf.
Pacey, A. (1983). The Culture of Technology. Cambridge, MIT Press.
Segal, G. (1995). "Asians in Cyberia." The Washington Quarterly 18, (Summer): 5-16.
Taylor, D. (1992). Global Software. Developing Applications for the International Market. New York,

Springer Verlag.
Toynbee, A. J. (1934). A Study of History. New York, Oxford University Press.
Treese, G. W. and L. C. Steward (1998). Designing Systems for Internet Commerce. Reading, MA,

Addison-Wesley.
Zysman, J. (1999). "Introduction and Overview: Common Stakes in the E-conomy". The Digital

Economy in International Perspective: Common Construction or Regional Rivalry, J. W. Cioffi,
Ed., University of California, http://e-conomy.berkeley.edu/events/deip/summary.html.

	DO E-BUSINESS SYSTEMS HAVE CULTURE �AND SHOULD THEY HAVE ONE? (
	
	
	Gregory (Grzegorz) E. Kersten

	1. E-BUSINESS SYSTEMS AND CULTURE
	2. CULTURES AND SOFTWARE INTERFACE
	3. METHODOLOGICAL CONCEPTIONS
	3.1 Surface culture and deep culture
	3.2 Technology, Software and Culture
	3.3 Culture’s past and future

	4. EBS MODELS AND ARCHITECTURES
	4.1 Business models and architectures
	4.2 Objects
	4.3 Example

	5. EBS CULTURALIZATION ARCHITECTURE
	6. BEYOND E-BUSINESS SYSTEMS
	REFERENCES

