

InterNeg Research Papers INR 06/04

 Revised version appeared in:

E-Commerce and Web Technologies
K. Bauknecht, M. Bichler and B. Proll (Eds.),

Lecture Notes in Computer Science, Vol. 3182
Springer, New York, 2004, (106-115).

h t tp : / / i n te rneg .o rg / • h t tp : / / i n te rneg.concord ia .ca /

Protocols for Electronic Negotiation Systems:

Theoretical Foundations and Design Issues*

Gregory E. Kersten, Stefan Strecker and Ka Pong Law
John Molson School of Business
Concordia University
Montreal, Canada
{gregory, strecker, kplaw}@jmsb.concordia.ca

Abstract

Existing electronic negotiation systems (ENSs) typically implement a single, fixed negotiation
protocol, which restricts their use to negotiation problems that were anticipated and established a
priori by the system designers. The single-protocol restriction limits ENSs’ applicability in
experiments and in many real-life negotiation situations. ENSs that allow for the use of different
protocols also allow for the customization to users’ needs and abilities. We present theoretical
foundations for the design of flexible and highly customizable protocol-driven ENSs. Our design
enables researchers and negotiators to map negotiation activities onto system components and to
construct their own negotiation protocols by creating a sequence of layout programs invoking
components and rules.

* This work was supported with grants from the Initiative for New Economy of the Social Sciences and

Humanities Research Council Canada, and the Natural Science and Engineering Research Council Canada.

e-negotiations 2004 2

1. Introduction
The term e-negotiation systems (ENS) has been used to describe software that employs Internet
technologies, is deployed on the World Wide Web, and capable of supporting, aiding or replacing one
or more negotiators, mediators or facilitators [1]. A number of ENSS have been designed, implemented
and applied to various negotiation problems. Some systems facilitate negotiation of documents and
their joint preparation, e.g., contract negotiations [2], others use email, chat and streaming video
software [3, 4]. There are also systems that allow the negotiators to enter offers, which are
subsequently sent to human experts who suggest agreements (e.g., http://electroniccourthouse.com).
Some ENSs require the installation of a special client, such as SmartSettle (http://smartsettle.com),
while other (hybrid) systems combine auction and negotiation elements, such as NegotiAuction [5] or,
negotiation and workflow elements, such as GNP [6]. Several of these systems are currently
investigated within the SSHRC project on e-negotiation (http://interneg.org/enegotiation). An overview
of different ENSs can be found in Shim [7] and Neumann et al. [8].

With two exceptions—SilkRoad [9] and INSS [10]—existing ENSS implement only one fixed
negotiation protocol [11]. This restricts the use of ENSS to types of problems and interactions that were
assumed and established a priori by their designers. This, in turn, imposes limitation on the
behavioural research of the ENSS’ use and their efficiency and efficacy, on the ENSS’ applicability to
support evolving negotiations, and those conducted by users who have different needs, cognitive
abilities, and cultural and professional backgrounds.

Ongoing behavioural research in ENS focuses on (i) technology adoption by negotiators, and (ii) the
impact of different systems on the negotiation process and negotiated outcomes [12, 13]. Both
research directions utilize experimental and empirical methodologies. From this perspective (in
particular in experimental studies of ENSS’ use and adoption), the assessment of the impact of different
system features on the process and outcomes of negotiations requires the use of systems, whose
differences and similarities can be easily controlled by the researcher. From a negotiator’s point of
view, the limitation to a single fixed protocol restricts the use of a particular ENS to the supported class
of negotiation problems, which may not include their problem at hand. If, on the other hand, ENS
implement negotiation protocols, which apply to a large class of negotiation problems, i.e., are very
general, they impose significant cognitive and informational demands on the users who need to make
decisions about the selection of tools and features.

Users who use a system to negotiate need to concentrate on the problem and process, and make
decision about the concessions rather than compare different tools and decide about system features. It
is thus advantageous that: (1) a protocol be constructed for the negotiators based on their
characteristics and the negotiation problem and context, or (2) the negotiators decide on a negotiation
agenda, which sets a particular formal protocol.

The purpose of this paper is to present the theoretical foundations and discuss design and
implementation issues of negotiation protocols. These protocols can be implemented in a software
platform [14] and then used for construction of various ENSS. The remainder of this contribution is
organized as follows. Section 2 briefly reviews vital elements of a negotiation methodology. Section 3
introduces the theoretical foundations of negotiation protocols and their properties. The design and
implementation issues of mapping negotiation activities to system components are discussed in
Section 4, and Section 5 presents ongoing and future work.

e-negotiations 2004 3

2. Negotiation methodology
Negotiation methodology describes the methods, procedures, and techniques used to collect and
analyze information used in negotiation, the process of communication, exchange of offers and
concessions, and arrival at an agreement or deadlock. It is important that these methods and techniques
match the negotiator’s capabilities, complement each other, do not produce contradictory information
and—when used—contribute to the negotiation effectiveness.

2.1 Negotiation process and activities

The use of a methodology has been advocated by negotiation experts, but this advice is often
neglected in many face-to-face, email and unstructured negotiations. One of the important
contributions of an ENS is to provide a methodology, which matches the negotiators’ requirements and
is appropriate to their problem. The use of a methodology in an ENS is also required for the tractability
of the process and its ease of use.

For the purpose of this work, we consider only two key components of the negotiation methodology:
(1) the negotiation process model, and (2) the negotiation protocol. The process model provides a
framework for negotiations; it organizes the activities undertaken by negotiators by grouping them
into negotiation phases and by assigning different activities to each phase. It serves as a starting point
for the software design and draws its significance from imposing a methodologically sound approach
to negotiators [15].

The protocol is a formal model, often represented by a set of rules, which govern software processing,
decision-making and communication tasks, and imposes restrictions on activities through the
specification of permissible inputs and actions [16, 17]. Negotiation protocols are further discussed in
the next section.

To our knowledge, there are no behavioural studies on e-negotiations and, therefore, no process model
specific to e-negotiation has been developed. For the purpose of designing and implementing an ENS,
we use a five-phase model based on Gulliver’s eight-phase model [18], which allows for the
consideration of a wide range of negotiations, including those supported by ENSS.

Each negotiation phase has its own purpose and set of activities, which are concrete actions
undertaken by each negotiator. The purpose of the different negotiation phases is to provide the
participants with a framework and rationale for activities conducted in each phase. The consideration
of phases helps to specify negotiation activities undertaken and the relationships among them. The
phases’ main activities are briefly described below.

Planning comprises activities that negotiators undertake individually and jointly. The negotiators
formulate their representation of the negotiation problem including the specification of issues and
options. In this phase, the negotiators specify their objectives and preferences, and such negotiation-
specific constructs as the best alternative to the negotiated agreement and reservation levels. The joint
activities in this phase include the selection of the negotiation location and time, and the com-
munication modes the negotiators will use.

Agenda setting and field exploring include the negotiators’ discussion about the negotiated issues and
their meaning. The result of the discussion may be that new issues and options are added and/or some
are deleted. The negotiators may also discuss the protocol they will follow, the timing of the
exchanges, the deadline and—in some negotiations—their objectives, priorities and constraints. The

e-negotiations 2004 4

result of these discussions is that the negotiators may have to revise the problem, objectives and
preferences, and also their strategies and initial tactics.

Exchanging offers and arguments allows the parties to learn about the others’ limitations, and to
identify the key issues and critical areas of disagreement. During this phase, the parties realize the
potential of a compromise and can assess its main features. The analysis of a negotiation may focus on
the modification of strategies, the determination of concessions and revision of aspiration levels, and
on the restriction of efficient solutions to those which may be acceptable to the parties.

Reaching an agreement means that the parties realize that the negotiation will be successful. Having
identified the critical issues, the parties may develop joint proposals or soften their individual limi-
tations. The parties may also identify a limited number of possible compromises.

The negotiation concludes when the negotiators reach an agreement. They evaluate this compromise
and consider possible improvements. They may also discuss additional issues which, however, have
no impact on the negotiations (e.g., about the agreement implementation).

The negotiation process model provides a framework, but it does not impose any restrictions on the
negotiators concerning the sequencing of phases. In any given phase, the negotiators may revisit
previous phases and then return to initial phase. Moreover, it often occurs in real-life negotiation that
negotiators skip or ignore one or more phases. Although negotiation experts suggest that all phases
should be considered, we leave this issue to the protocol designer as there may be specific situation, in
which one or more phases should be bypassed.

2.2 Negotiation protocols and activity types

Any negotiation supported by an ENS requires that the software designers precisely define the
activities and their sequence using a negotiation protocol [13, 16]. The negotiation protocol defines
the activities that are permissible in every state of the negotiation, their sequence as well as input and
output requirements. The key concepts used to define the activities and to specify their sequencing are
presented in Figure 1. Behavioural theory posits that activities depend on the negotiators’
characteristics and the negotiation context (including power distribution, relationship and the relative
importance of outcomes). These characteristics determine the negotiators’ approaches, their strategies
and tactics leading to the selection of specific activities from the negotiation phases.

Behavioural research cannot provide sufficiently precise insights regarding sequencing of activities
within each negotiation phase. This is because of the number of possible combinations of the
negotiator’s characteristics, interdependencies between characteristics of the negotiators, dependence
of the negotiators’ behaviour on external factors (e.g., relationship with other stakeholders, competing
decision problems and the consideration of future situations), and the complexity of the problem and
process.

With the exception of well-defined and highly structured negotiations, such as those taking place in
procurement of standardized goods, the negotiators cannot follow a strict set of rules defining the
activity’s sequence. The above mentioned complexities introduce the requirement for providing the
negotiators with some degree of freedom in the selection of activities. During the process, the
negotiators may wish to review the problem, modify their preferences, add or remove issues etc.,
which imposes the requirement of some activities to be optional and/or exchangeable for other
activities. Also, the negotiators may be forced to undertake certain activities in order to move to the
next activity. For example, they should learn about the negotiation problem, consider their own

e-negotiations 2004 5

objectives and preferences and evaluate the counterpart’s offer before making their own offers. To
accommodate these requirements, we distinguish between mandatory activities and optional activities
(see Figure 1).

Figure 1. Theory- and protocol-based activity specification

The distinction between mandatory and optional activities is necessarily context-dependent; the same
activity may be mandatory in one situation and optional in another. For example, when the user enters
the system for the first time, he is required to learn about the negotiation problem; at this time this
activity is mandatory. When he logs in the second and subsequent times, learning about the problem
should become not mandatory but an optional activity. It is the negotiation protocol that, based on the
process model and the assumptions of the protocol designer, categorizes some activities as mandatory
or as optional, and modifies this categorization as the negotiation progresses.

The assumptions underlying a specific protocol may reflect the negotiators characteristics (e.g., culture
and profession), the type of negotiations (e.g., distributive, integrative, and mixed), and the complexity
of the negotiation problem (e.g. one or more issues; constrained or unconstrained). In the research
environment, these assumptions may also reflect the needs of the researcher studying the users’
behaviour and the system’s efficacy.

Different negotiators and negotiation situations require that different protocols be used. The protocols
may differ in the sequencing of the same set of activities. Conversely, the same set of activities may be
(re-)used in the construction of many different protocols. Negotiation strategies and tactics also may
require the use of different protocols. Moreover, different types of negotiations, e.g., single or multiple
issues, and different roles of the negotiators, e.g., buyer or seller, require different protocols. Another
need for different negotiation protocols derives from the requirements and demands that different
stakeholders have regarding their use of an ENS. To meet the requirements of negotiators and
researchers, it is essential to equip an ENS with the flexibility to carry out several different protocols
and to provide the user or researcher with the possibility of designing new negotiation protocols.

2.3 Process model and negotiation states

The framework provided by the process model is implemented in the negotiation protocol, which is
represented by a sequence of activities and rules imposed on the execution of the sequence.
Additionally, the execution of a protocol depends on the context of a negotiation, or more precisely,
on the current state of a negotiation a user is currently involved in and on the user’s earlier actions in
that negotiation. The process model reflects the progression of a negotiation as it tracks the completion
of phases and activities. An example of the process model, and its phases and activities is given in
Table 1. We use these phases and activities to illustrate, in Section 3, formal protocol construction and
manipulation.

e-negotiations 2004 6

Table 1: Example of the process model, activities and states

Negotiation phase and activity State Abbr.

1. Planning

- Negotiation problem Negotiation case NC

- Preferences and rating Utility construction UC

- Assessment of alternatives Alternative construction AC

2. Exchanging offers and arguments

- Offer and/or message construction Offer message OM

- Counter-offer assessment Counterpart’s offer CO

3. Reaching agreement

- Agreement Agreement reached AR

 Agreement assessment AS

- Closing negotiation End EN

4. Concluding negotiation

- Agreement improvement Agreement improvement AI

- Offer and/or message Offer message OM

- Counter-offer assessment Counterpart’s offer CO

- Closing negotiation End EN

Each negotiation activity is associated with an ENS state (see Table 1); however the reverse is not
true: The system may be in a state that does not correspond to any negotiation activity. For instance,
state AS involves agreement efficiency analysis and does not correspond to any activity. The
difference between a negotiation activity and an ENS state is that the former describes a user action,
while the latter denotes a user and/or a system action.

3. Negotiation protocols
Every ENS implements a negotiation protocol—even though some system designers do not specify the
protocol explicitly—the protocol can be derived from the required and possible interactions between
the negotiators and the system. It is sensible to formulate the negotiation protocol explicitly, because it
specifies the users’ interactions and thus the users need to determine if the system conforms to their
requirements. In addition to the interaction transparency introduced by explicit protocols, it also
allows for mapping protocols onto negotiation processes. Furthermore, it is also possible to assess the
protocols’ underlying assumptions and characteristics. Formulation of protocols should follow rules
and procedures that correspond to negotiation methodologies.

e-negotiations 2004 7

3.1 Preliminaries and conditions

Following the distinction between mandatory and optional activities (see Figure 1), we distinguish two
types of ENS states: mandatory or optional.

Let:

S = {s1, …, sN} be the set of all possible states;

M be the set of mandatory states (M ⊂ S);

O be the set of optional states (O ⊂ S);

sstart ∈ S be the first state of the protocol; and

send ∈ S be the last state of the protocol; it is the protocol termination state.

We assume that s1 = sstart and sN = send.

Every state is associated with at most one mandatory state, which defines a partial protocol sequence,
i.e. a sequence is a pair of two states:

si → sj, si ≠ sj with i, j ∈ I, (1)

where si ∈ S; sj ∈ M; and |I| = N is the number of states.

Using the states given in Table 1, we can formulate several sequences, including the following two
sequences: NC → UC, UC → AC. State UC is mandatory for NC; the user can move to state AC only
after completing activity associated with UC. Similarly, AC is mandatory for UC.

Optional states allow the user (or system) conducting activities within a sequence prior to moving to
the next sequence.

si → sj opt Oi, with si ≠ sj, si ∈ S, sj ∈ M, Oi ⊂ O, (2)

where opt is the operator of state association and Oi is the set of optional states associated with state si.

Formula (2) is interpreted as follows: The user who is in state si can visit states sl ∈ Oi multiple times
and return from these states to si, but he cannot move to any state sk (sk ≠ sj, sj ∈ S \ Oi), before he
visits state sj ∈ M. For example, the user who assesses alternatives (AC) can return to the description
of the negotiation problem (NC) and revise his preferences (UC), but he cannot move to any other
state listed in Table 1, unless he formulates an offer, that is: AC → OM opt {NC, UC}.

A state may have a null state associated as mandatory state as long as the set of optional states is non-
empty. The resulting sequence with a mandatory null state is denoted as:

 si → 0 opt Oi with si ∈ S, Oi ⊂ O, (3)

where 0 is the null state. Similarly, a state may have a mandatory state with an empty set of optional
states (Oi = ∅):

e-negotiations 2004 8

si → sj opt 0 with sj ∈ M. (4)

Based upon these preliminaries, negotiation protocols are required to meet certain general conditions.

Condition 1: If state si has null mandatory state, then at least one optional states has to be associated
with si, i.e.,

si → 0 opt Oi ⇒ Oi ≠ ∅. (5)

Condition 1 is required in order for the user to be able to move from the state with which no
mandatory state is associated to one or more optional states. Moves between optional states are not
considered sequences.

Assume that set Oi in (5) has three elements Oi = { sj, sl, sk }. The user can move from any optional
state to any other optional state, e.g., he can move from sj to sl to sj. One implication is that all optional
states in (5) are elements of Oi.

The second implication of (5) is that to move from si or one of its optional states to a state, which is
not an element of Oi, is possible only if there is a state in Oi, which is a part of another sequence of
type (2) or (3). This requirement is formulated in the following condition.

Condition 2: With every state si, which has a null mandatory state, at least one optional state has to be
associated, which is part of another sequence, that is:

∀ si : si → 0 opt Oi : ∃ sl, sl ∈ Oi and (sl → sj, sj ∈ M or sl = send).

This condition assures that the user can move from any state to either a state with which a mandatory
state is associated or to the termination state send. Condition 1 and 2 do not assure that every state can
be accessed by the user; this is achieved if the following condition is met.

Condition 3: With the exception of the starting state (sstart), every state si ∈ S is mandatory and/or
optional, i.e.,

∀ si, si ≠ sstart, si ∈ S : si ∈ M ∪ O.

Condition 4: A mandatory state may appear only in one sequence of the protocol, i.e.,

∀ si, sj, sl ∈ S, si → sj ⇒ ¬ ∃ sl → sj, si ≠ sl, sj ∈ M.

The above four conditions define the required characteristics of every protocol.

Definition 1: q(i,k) is the list of k sequences that begin with state si and end with the mandatory state
si+k, such that:

1. si is an optional state for si-1;

2. The mandatory state for si+k is the null state.

3. No state, other than si+k, in q(i,k) has mandatory null state; and

4. With the exception of si+k every mandatory state is the first state in one other sequence in q(i,k).

The list of sequences q(i,k) is:

e-negotiations 2004 9

q(i,k) : si → si+1, s i+1 → s i+2, …, si+k-1 → si+k ∧ si ∉ M ∧ si+k → 0. (6)

List q(i,k) can be represented as a graph starting at state si and ending at si+k. Every state starting a
sequence has a mandatory state which starts another sequence, with the exception of the last state sk.
The sequences in the list may or may-not have associated with optional states (see Figure 2).

Let:

J be the index set of lists of sequences; q(ij,kj) denotes the j-th list in the protocol;

Q = {q(ij,kj), (j ∈ J)} is the set of all lists of sequences of the type given by (6) in the protocol;

P = {si → 0 opt Oi, i ∈ I} be the set of all sequences in which the mandatory state is the null state;

Si (Si ⊂ S) be the set of states that are elements of the mandatory and optional sets associated with si
and the states preceding si, i.e., Si = {sstart, s2, …, si; Ostart, O2, …, Oi,); and

Si+ (Si+ ⊂ S) the set of states that are elements of the mandatory and optional sets associated with
si+1 and states following si+1, i.e. si+2, …, send.

Note that Si+ ∩ Si is not necessarily an empty set because some states may appear in more than one
optional sets both preceding, including and following si.

Definition 2: Negotiation protocol ℘ is the 5-tuple:

℘ = (S, O, M, P, Q) (7)

3.2 Protocol completeness

Protocol ℘ has a number of states; an obvious requirement is that these states can be visited, that is an
activity corresponding to a state can be undertaken. This protocol characteristic is its completeness.

Theorem 1: Negotiation protocol ℘ is complete if Conditions 1-4 hold and:

1. The state sstart occurs only once in the protocol and sstart is neither a mandatory nor an optional state
for any state si ∈ S.

2. The ending state sij+kj (j ∈ J) of each list of sequences q(ij,kj) is the first state in a sequence with a
mandatory null state and its set of optional states is non-empty:

∀ q(ij,kj) ∈ Q : sij+kj, (ij+kj) ∈ P ∧ Oij+kj ≠ ∅. (8)

3. With the exception of the protocol starting state sstart, every state sij that begins list q(ij,kj) belongs
to at least one set of optional states:

∀ q(ij,kj) ∈ Q ∃ l ∈ P : sij ∈ Ol. (9)

4. For every state which is associated with null mandatory state either:

∀i ∈ P ∃ sj ∈ Oi : sj → 0 opt Oj, Oj ∩ Si+ ≠ ∅ (10)

or

e-negotiations 2004 10

∀i ∈ P ∃ sj ∈ Oi : sj → sl, sl ∈ M ∩ Si+ (11)

5. The protocol termination state send occurs only once in the protocol and Send+ \ Si = ∅.

Outline of the proof:

A. If sstart occurs in several sequences or optional sets, then—according to the protocol ℘–the user
can enter the protocol in each of these sequences or optional sets. Then there is no guarantee that
all the states can be visited. An illustration of this situation is given in Figure 2. If sstart is added to
any of the optional sets or one of the states si (i = 1, …, 13) is replaced with sstart, then the number
of states cannot be visited. The only exception is if sstart is added to set Ostart, but this operation
makes little sense as then one sequence has two of the same states. For example, replacing s1 with
sstart causes that states included in Ostart cannot be visited.

B. If sstart is a mandatory state then the starting state for the sequence, in which sstart is mandatory
cannot be visited, unless it is an optional state in some other sequence. This situation cannot take
place because of 1A.

1. From the definition of the list of sequences (6), it follows that every end state has a mandatory null
state. If its optional set is empty, then no other state can be visited from this ending state, and
Condition 1 is violated.

2. From the list definition (6), it follows that the state that begins list q(i,k) is not mandatory. If it
does not belong to any optional state, then this state cannot be accessed from any other state, and
Condition (8) is violated.

3. From (5), we know that every state which has null mandatory state also has nonempty optional set.
Assume that for some i (i ∈ P), condition (10) is violated. If this is the case, then there is no state
in Oi (i ∈ P), which is an optional state for any of the states which are elements of Si+. Similarly, if
condition (11) is violated, then there is no state in Oi (i ∈ P) that is associated with a mandatory
state that has not yet been visited. In effect no state in Si+ can be accessed from si.

4. If send occurs more than once in the protocol, then there are states that are in between these
occurrences. Selection of the first occurrence causes the protocol to terminate without the
possibility for visiting states that follow this occurrence. The send state may be optional (see Figure
2) or mandatory, but it cannot have a mandatory state and thus it cannot have optional states. This
is because from state send no other state can be visited. Thus we have Send+ = ∅.

An example of a complete protocol is given in Figure 2. 13 states (including sstart and send) are
distinguished. There may be many other states that are included in the sets of optional states.

The protocol depicted in Figure 2 has three lists of sequences. In one list, two optional sets are
indicated (one associated with sstart and the other with s3). Two other lists have only mandatory states
(s5 → s6 and s8 → s9, s9 → s10). Following (5), termination states for these sequences have nonempty
optional states (O4, O6 and O10). Following (9), with the exception of sstart, the two states that start a list
(s5 and s8) are also optional states in, respectively, O4 and O6.

e-negotiations 2004 11

Figure 2. An example of a complete protocol

Following (10), states s6 and s10 have null mandatory sets but their set of optional states (O6 and O10,
respectively) contain states, respectively s7 and s11, which have nonempty optional sets. Following
(11), the nonempty set of optional states of states s6 and s10, includes the set optional states, O7 and
O11, respectively, which in turn include states, s8 and send, respectively, which are part of the
sequences.

Note that some optional states may never be visited by a user during the negotiation process. In the
protocol depicted in Figure 2 only the 13 states that are identified have to be visited; other optional
states may but need not be visited, e.g., no state in Ostart and O3 have to be visited, and only state s5 in
O5 has to be visited.

3.3 Protocol modifications

The discussion of different protocol states and their relationships given in Sections 3.1 and 3.2 does
not take into account the dynamics of the negotiation process. We formulated Conditions 1-4 and
Theorem 1, which specify protocol properties and, in particular, introduce the concept of a complete
protocol. This is not to say that there may not be situations in which the protocol designer may want to
violate one or more of these properties. One such example is the condition 5 given in Theorem 1
stating that termination state send occurs only once in the protocol. For practical reasons this condition
may be purposefully violated, so that the user has an option to terminate the negotiation at every state
rather than be forced to follow the protocol until he reaches state send.

The distinction between mandatory and optional states partially takes into account context-
dependency; it only allows to access different optional states before moving to a mandatory state.
Protocol ℘ defined with (7) may be used in highly structured protocols, which follow the rules
implemented in ℘. The rules governing the moves between states are static; they do not depend on the
states visited. A stronger requirement reflecting protocol context-dependency is to allow for the states’
rearrangement during the negotiation. In many negotiations, the permissible states depend on states
previously visited.

To illustrate this form of context-dependency consider the example given in Table 1. At the beginning
of the negotiation, the user is required to read the negotiation case (NC), construct utility function
(UC), and assess alternatives displayed by the system (AC). While in state UC, the user may wish to
read the case again. Hence we have the following two sequences.

NC → UC opt 0, UC → AC opt NC. (12)

If the user is in state UC and decides to read the case (select optional state NC), the part of the protocol

e-negotiations 2004 12

given in (12) forces him to construct the utility function once again. This makes little sense; the user
may wish to do this but state UC should not be mandatory anymore in the first sequence. This we can
achieve through the following modification of (12):

SUC ⇒ NC → 0 opt UC. (13)

Modification (13) replaces mandatory state UC with null state and makes it an optional state for NC.

In order to represent this and similar forms of protocol context-dependency, we need to consider the
protocol instance, which is the protocol that at any given time of the negotiation specifies the
accessible mandatory and optional states.

Let ℘i be the instance of protocol ℘ in state si (si ∈ S) and

∀ si ∈ S ℘i = (Si, Oi, Mi, Pi, Qi); Si ⊆ S, Oi ⊆ O, Mi ⊆ M. (14)

The states and sequences, which are elements of sets defining ℘ but which are not elements of ℘i, are
used in the modification of ℘i. This modification may involve the introduction of new lists of
sequences and breaking up existing lists in ℘i. Similarly, a null state in a sequence may be replaced
with a mandatory state. Therefore, in (14) sets Pi and Qi are not subsets of, respectively, P and Q.

In ℘i a state may be both mandatory and optional. To illustrate this we use the example (12)-(13). The
modification of the first sequence in (12), (NC → UC opt 0) to the sequence given in (13) implies that
we removed a mandatory state and added an optional state, i.e.:

SUC ⇒ MUC = MNC \ {UC} ∧ OUC = ONC ∩ {UC} (15)

That is, in ℘i some states may be both potentially optional and mandatory, that is, M ∩ O ≠ ∅.
However, M i ∩ O i = ∅.

The dynamics of the negotiation process are reflected in context-dependent modifications of the
negotiation protocol at run-time, which means that some mandatory states may became optional, some
optional states may be added and others removed depending on the user and system actions. We allow
for context-dependent system modification by introducing the following four operators:

1. rmv-ma removes the mandatory state sj ∈ MR from state si ∈ S, when state sk ∈ S is visited; where
MR (MR ⊂ M) is the set of mandatory states that can be removed, when the user is in state sk:

rmv-ma(k,i,j): ∀ sk ∈ S : si → sj opt Oi, si ∈ S, sj ∈ MR, k≠i, k≠j, i≠j ⇒ si → 0 opt Oi.

2. add-op adds an optional state sj ∈ Oji to the set Oi, when state sk ∈ S is visited; Oji (Oji ⊂ S \ Oi) is
the set of optional states that can be added to Oi, when the user is in state sk.

add-op(k,i,j): ∀ sk ∈ S : si → sl opt Oi, Oji ≠ ∅, sj ∈ Oji ⇒ si → sl opt Oi ∪ {sj}.

3. rmv-op removes an optional state, sj ∈ Oi, from the set of optional states, Oi, when state sk ∈ S is
visited:

rmv-op(k,i,j): ∀ sk ∈ S : si → sl opt Oi ∧ Oi ≠ ∅, sj ∈ Oi ⇒ si → sl opt Oi \ {sj}.

e-negotiations 2004 13

4. add-ma adds the state sj ∈ S as mandatory state to state si ∈ S, when state sk ∈ S is visited:

add-ma(k,i,j): ∀ sk ∈ S : si → 0 opt Oi, sj ∈ S, sk≠si, sk≠sj, si≠sj ⇒ si → sj opt Oi.

Using the above operators it is possible to modify different protocols, for example, after the user
visited state UC, the sequence NC → UC is replaced with NC → 0 opt UC. This modification involves
two operators: rmv-ma(UC, NC, UC) and add-op(UC, NC, UC). Note that the operator’s parameters (k,i,j)
can be read as (when, where, what), e.g., rmv-ma(UC, NC, UC) means when the user is in state UC
remove in state NC the mandatory state UC.

3.4 Intervening states

The characteristic that distinguishes negotiations from individual decision making is exchange of
information between the negotiators (e.g., offers, messages and offer acceptance). Information sent by
one negotiator affects his counterpart’s activities. Therefore, the system has to display this information
at the earliest possible time and irrespectively of the state he wants to visit. The states which contain
and process information sent by the counterpart are the intervening states.

In face-to-face negotiations, the negotiators may exchange messages even during the planning phase.
The synchronous aspect of these negotiations causes that they rarely formulate offers before both sides
are ready to negotiate.

Asynchronicity of negotiations conducted via an ENS causes that one party may learn about the
problem and be ready to exchange offers and messages, while the other party does not yet know the
negotiation problem. This may require that the user be moved from some states to an intervening state,
but not from other states. For example, if the user is in state NC and his counterpart makes an offer,
this offer should not be displayed to the user prior to his specification of preferences in state UC. We
therefore associate with every intervening state a set of permissible states; these are the states from
which the user can be moved to the intervening states.

The move to an intervening state is defined with:

∀ si → sj opt Oi, sl*, sl ∈ V, si ∈ Vl ⇒ • → sl* (16)

where: sl* means that sl is active (e.g., the counterpart sent message); V (V ⊂ S) is the set of
intervening states; Vl (Vl ⊂ S) is the permissible set for state sl; and • → sl* means that the user
selection of any state from the sequence (si → sj opt Oi) moves him to sl* rather than to the selected
state.

After an intervening state sl was activated (e.g., the counterpart made an offer) and the user was moved
to this state, this state becomes inactive. Once the intervening state is activated for the first time it
becomes optional for all its permissible states, i.e.,

• → sl* ⇒ ∀ si → sj opt Oi ∪ {sl }, sl ∈ V, si ∈ Vl (17)

Formula (17) allows users to review information sent earlier by their counterparts.

e-negotiations 2004 14

4. Design and implementation issues

ENSs, like other web-based systems, interact with their users through pages. A page provides
information to the user (e.g., about the negotiation problem or an offer) and/or may require that the
users enter information (e.g., determine problem issues or construct an offer). This requires the
separation of every page into its components. A component is the basic building block of Invite; it
comprises text, graph, form, header, links or footer.

Components are invoked by page composer programs. These programs set the page layout and
position the input/output interface of the components on the page. Components are reusable; the same
set of components can be invoked from different page composers. This is especially useful, if the page
layout itself is the subject of experimental research (e.g., to study the positioning of components on a
page on the negotiators’ efficiency), but also for the internationalization of negotiations (e.g. in
different languages and numeric systems).

Activities are concrete actions undertaken by the negotiator, while states are actions undertaken by the
user or by the system. If an action for a given state is completed, the system transitions to another state
(mandatory, optional or internal to the system). The state of the execution of an instance of a
negotiation protocol corresponds to a page composer. From its current state, a negotiation protocol
instance provides transitions to a set of next states, which are invoked through hyperlinks and/or
buttons embedded in the page.

An example illustrating the relationship between user activities, page composers and components is
given in Figure 2. Component 1 produces output C1 and Component 2 requires the user’s input; both
correspond to Activity 1. A component may use data stored in databases and one or more external
applications, e.g., for creating a graphic or calculating utility values. Not every component
corresponds to an activity; Component 3 produces an output, which is not associated with any activity.
Examples of such components are headers, footers or the information about the status and context of
the negotiation.

Figure 3. Activities, components, page composers, and pages

The component that is critical for the protocol instance implementation is the context-setting
component; its output is present on every page as a set of links associated with the mandatory and
optional states. This component provides the context-dependent association between the negotiation
activities and the negotiation protocol.

This conceptualization of the negotiation framework reflects the model-view-controller (MVC) or
mediator design pattern [19], where a page composer corresponds to a view and a component reflects
a model. Following the MVC paradigm, the controller governs the sequencing of page composers.

e-negotiations 2004 15

However, the conventional MVC pattern does not contain provisions for executing negotiation
protocols as described in the previous paragraphs. Several extensions to the MVC pattern have been
proposed in order to account for the application flow required for negotiation protocols, e.g. numerous
workflow patterns [20] and the hierarchical MVC pattern [21]. It remains, however, unclear how to
deploy those design patterns to web environments [22]. It is therefore necessary to design a
“negotiation” controller, which executes instances of negotiation protocols.

The negotiation controller runs a protocol instance assigned to users’ negotiations. The context, in
which each instance of a negotiation runs, is the state in which the negotiators are at a given point in
time and is defined by the activities undertaken so far. It selects and activates the appropriate page
composer program according to a protocol instance. It is important to note that the negotiation
controller has to be independent of the sets of components, page composers and rules. This enables to
introduce into the system additional components, page composers and rules without changing the
implementation of the negotiation controller. In effect this separation of the controller from other
elements of the systems provides essential flexibility; the negotiation controller executes a protocol
instance, without being “aware” of any internals specific to a component, page composer or rule. The
available sets of components, page composers and the rules constrain the design of negotiation
protocols and the execution of a protocol instance, but do not modify the controller itself. As a result,
the negotiation controller is capable of executing different protocol instances of different protocols at
the same time.

5. Summary and future work

A negotiation protocol is a generic specification of a sequence of page composers. Its instance is
derived by assigning a protocol to a specific user, who participates in a specific negotiation. This
approach allows for the construction of different ENSs based on the components and page composers
implemented in a software platform. In this paper, we lay out theoretical foundations for negotiation
protocols based on a negotiation methodology derived from behavioural research. The foundations
facilitate the design and implementation of negotiation protocols and allow for the construction of
ENSs based on these protocols. A negotiation controller allows the software platform to execute
different negotiation protocols in different ENSs and thus simplify the use of e-negotiations in real-
world and in research environments.

We are currently designing and implementing a software platform Invite, and are predominantly
concerned with the design and implementation of a negotiation controller. Earlier research has shown
that there are several ways to design and implement a negotiation controller [6], e.g. by a rule-based
expert system, by logic programming or by a database. For the purpose of Invite, we have chosen the
database approach in order to avoid the additional complexity of a rule engine. More importantly, a
database approach allows for building a controller that is simple and, as an inference engine,
independent of the database content.

The construction of negotiation protocols may be a highly complex task. The theory in Section 3 will
allow for the design of a software tool that supports protocol designer and automatically verifies, if the
particular protocol meets the formulated conditions. Our future work includes the implementation of
several bilateral negotiation protocols, the components and page composers which are used by these
protocols, and a respective protocol designer support tool. We also plan to extend the Invite platform
to multi-bilateral and multilateral e-negotiations.

e-negotiations 2004 16

References
1. Ehtamo, H., R.P. Hämäläinen, and V. Koskinen (2004). An e-learning module on negotiation analysis.

Hawai'i International Conference on System Sciences. Hawai'i: IEEE Computer Society Press.
2. Schoop, M. and C. Quix, (2001). DOC.COM: A Framework for Effective Negotiation Support in

Electronic Marketplaces. Computer Networks, 37(2): 153-170.
3. Lempereur, A., (2004). Updating Negotiation Teaching Through The Use of Multimedia Tolls.

International Negotiations Journal, 9(1): (to appear).
4. Moore, D., et al., (1999). Long and Short Routes to Success in Electronically Mediated Negotiations:

Group Affiliations and Good Vibrations. Organizational Behavior and Human Decision Processes, 77(1):
22-43.

5. Teich, J.E., et al., (2001). Designing Electronic Auctions: An Internet-Based Hybrid Procedure Combining
Aspects of Negotiations and Auctions. Electronic Commerce Research, 1(1): 301-314.

6. Benyoucef, M., et al. (2000). Towards a Generic E-Negotiation Platform. Sixth International Conference
on Technologies for Information Systems. Zurich, Switzerland.

7. Shim, J. and N. Hsiao (1999). A Literature Review on Web-Based Negotiation Support System.
Documentation for Web-based Negotiation Training System (WNTS):
cpol.albany.edu/wnts/WNSS_Literature_Review.pdf. Accessed: April 23, 2002.

8. Neumann, D., et al., (2003). Applying the Montreal taxonomy to State of the Art E-Negotiation Systems.
Group Decision and Negotiation, 12(4): 287-310.

9. Ströbel, M. (2003). Engineering Electronic Negotiations, New York: Kluwer.
10. InterNeg (1997). INSS. http://interneg.org/interneg/tools/inss. Accessed: March 4, 2004.
11. Ströbel, M., (2001). Design of Roles and Protocols for Electronic Negotiations. Electronic Commerce

Research Journal, 1(3): 335-353.
12. Starke, K. and A. Rangaswamy (1999). Computer-Mediated Negotiations: Review and Research

Opportunities, eBusiness Research Centre: University Park. 37.
13. Bichler, M., G. Kersten, and S. Strecker, (2003). Towards the Structured Design of Electronic Negotiation

Media. Group Decision and Negotiation, 12(4): 311-335.
14. Kersten, G.E., S. Strecker, and K.P. Law (2004). A Software Platform for Multiprotocol E-Negotiations,

InterNeg Working Papers INR04/04, InterNeg: Ottawa. http://interneg.org/interneg/research/papers/.
15. Lewicki, R.J., D.M. Saunders, and J.W. Minton (1999). Negotiation. Boston, MA: McGraw-Hill.
16. Kim, J. and A. Segev (2003). A Framework for Dynamic eBusiness Negotiation Processes. IEEE

Conference on E-Commerce: http://groups.haas.berkeley.edu/citm/.
17. Kersten, G.E. and G. Lo, (2003). Aspire: Integration of Negotiation Support System and Software Agents

for E-Business Negotiation. International Journal of Internet and Enterprise Management (IJIEM), 1(3):
293-315.

18. Gulliver, P.H. (1979). Disputes and Negotiations: A Cross-Cultural Perspective, Orlando, FL: Academic
Press.

19. Gamma, E., et al. (1995). Design Patterns: Elements of reusable Object-Oriented Software, New York:
Addison-Wesley.

20. Aalst, W.v.d. (2003). Patterns. http://tmitwww.tm.tue.nl/research/patterns. Accessed: February, 16, 2004.
21. Cai, J., R. Kapila, and G. Pal, (2000). HMVC: The layered pattern for developing strong client tiers. Java

World.
22. (2003). Barracuda - Framework Comparisons.

http://barracudamvc.org/Barracuda/docs/barracuda_vs_struts.html. Accessed: February 16, 2004.

http://barracudamvc.org/Barracuda/docs/barracuda_vs_struts.html

	1. Introduction
	2. Negotiation methodology
	2.1 Negotiation process and activities
	2.2 Negotiation protocols and activity types
	2.3 Process model and negotiation states

	3. Negotiation protocols
	3.1 Preliminaries and conditions
	3.2 Protocol completeness
	3.3 Protocol modifications
	3.4 Intervening states

	4. Design and implementation issues
	5. Summary and future work
	References

